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USING DIFFUSION MEASULKEMENTS TO DETERMINE
PORE-SIZE DISTRIBUTIONS TN POROUS MATERIALS

Lee F. Brown® and Bryan J. Travis

Basie and Applied Geosclences Division
Los Alamos Scientific Laboratory, Los Alamos, NM 875u%

ABSTRACT

A method for determiring pore-size drstributions from diffusion
measuraments is presented. A Wicke=-Kallenbach experiment, for mea-
suring diffusion fluxes within porous materials, 1s carried out over
a significant portion of the transition range between Knudsen flow
and bulk d]ffusion., If the internal porous structure of the material
18 modele.l us myrlad nonintersecting cylindrical pores, an equation
may be derived for the flux as a function of pressure, in which the
flux i3 a functional of the pore=-size distribution., The equation i=s
a Fredholm integral equatlon of the first kind. This ls an applica-
tion of the general inversion problem, and solution of the equation
for the pore-slze distribution 13 posaible. It is demunstrated from
ealculrted fluxes using pontulated ideal distributions that the methcc
works very well for both unimodal and blmodal distributiona. The
method Ir nol extraordinarlly sensitive to experimental error. An
example of a distrlbution obtained from a commercial porous cataiysat
ia presented and comparcd with that obtained by mercury pornsimetry.

® Present address: Department of Chemieal Englneering, Unlversity of
Colorado, Beulder, €O 80309



INTRODUCTION

The characteristies of a porous material's internal-void structure are
important ulmost every time the material is involved in any sort of proceas.
These processes range from the binlogical kind through catalysis, coal gasifi-
cation, petroleum production, and others too numerous to mention.

Probably the first step in examining the interpal pore structure of a
material 1s the evaluation of its total ir.ternal-void volume by one of the
capillary=filling moethods described by Innes (1968) or by using the mercury
and helium densities mentioned by Fass et al., (1974). Next would ve the mea-
surement of total surface arca, both internai and external, using the elegantly
practical physical adsorption method developed by Brunauer et al. (19338).

Beyond this, there is the recognition that the pores in a material do
not all have the same size, and so0 & distribution of pore sizes must be deter-
mined. An unusually comprehensive review of methcds for measuring pore-saize
distributions has been presented by Dullien and Batra (1970). Of the methods
mentioned there, the nitrogen sorption-condensation and the mercury penetration
methods have achieved popularity for measuring simple lsotherms. Both of thenc
techniques combinc the virtues of reasonable and not overly=long experimental
procedures with simple mathematical analy:»s. A Jump upward Ln scphistleation
and renllsm In modeling pore=-aize diatributions has come with the development.,
maasarement , and use of a bivariate pore=siue alsiritution bv Dulllen (19745,

Both the nltrogen sorption-condensation and the mercury penctratlon
methods have signifleant drawbacks. Uslng them war a glant step forward In
the ablliLy to prediet diffusion rates in poro iy catolyntn, but Lhe best
techniquea ntill can only forecant diffunion ratcn wiihin a factor of twe
(Satterficeld and Cadle, 1968; Brown et al., 1909). The forceasts for some
predietable exceptions are oven worae (Brown ot al., 1969; Haynen and Brown,
197", Scheidegger (1994) pointan out that permeabllity predictiona baned on
mereury=penetration pore=nize diatributlons have been very poor.  Thene obner-
vationn Indieate that though the pore=alze distributions from mercury penetra-
tion and nitrogen sorption=condenzation do glve valuable information concerning,
Lhe Internal=vold atracture, there ta st much te measure which currently in



Using a bivariate distribution, Duliien (1975) was able to obtain Aquite
good predictions of permeability ir several sandstones. His bivariate distri-
butions are obtained by combining mercury porosimetry with quantitative photo-
micrography. The latter technique is quite time-consuming, and thus one of
the advantages of the simple methods is lost. It also has not yet been applied
to pores with radil below about 1 ym. 1In addition, though it is well known
that many porous materials are not isotropic, none of the methods discussed so
far measure anisotropy in any fashion. New methods f'or determining pore=-size
distributions could well fill a need for giving more information about tne
internal-void structure of a porous material.

This paper presents a method for the determination of pore-size distrij-
butiona from diffusion measurements. The methnd i3 an application of the
general inversion problem that recently has been recelving attantion in many
fields (Allison, 1979). In this technique, the pore-size distribution must be

obtailned by ¢he solution of a Fredholm Integral equation o! the first kind.



THECRY

Tne Fundamental Equation

An experiment for evaluating diffusion within porous materials was
c:vised by Wicke and Kallenbach (1941) which measured steady-state counter-
diffusion rates of two gases through one or more porous pellets. In this
experiment, there are no temperature or pressure gracdients across the pellet.
This approach has been used widely, and detailed descriptions of modern appa-
ratus and procedures for carrying out the Wicke~Kallenbach experiment are
available both for pressures greater than atmospheric (Bell, 1971) and below
atmospneric (Remick, 1972).

An equation has been developed which deseribes the dependence of a dif-
fusion rate in the Wicke-Kallenbach experiment on the porosity of the solid,
gases involved, pressure, Lemperature, and pore size. This equation, derived
independently from different models by Evans et al. (1961) and by Seott and
Dullier (1962), is

Ny = o CAB ' 1n [ i VIR Y et TX ] (1
RTL« 1y, o+ (D“/D“)

0 (1,75 .
in whicl, Dap = (DAB)(Po/P)(Tllo) ()
- . . . ) 172
For a cyllndrinn! pore, Dyp * (2/3)(6 RT/nM,) (r) (3)

For a solld ponsessalng cylindrical pores of a single radius, tihere are
no adjustable parameters ln Eq. (1), Given two gases, a temperature, and a
pressure, one can determine the diffusion rates of the gases through a solid
plerced by parallel pores of a slngle radlus. The validity of thla equation
for bundlen of slngle=rivlitin caplllarien atl room temperature over a wide range
of pitessnure wan conflirmed exnerimentally by Remick and Geankopllia (1973).

There are limiting formn of Eq. (1) at both high and low preasuren, At

high pressuren, the equation can be simplified to
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and at low pressures, Eq. (1) becomes

N = € DKA P

h RTL

(Y, = Yp) (5)

To use Eq. (1) in the derivation of an equation to rleseribe the total
flux t.arough a real porous solid with pores of varying size, shape, and inter-
connecti-ity, a model of the porous substance musi first be postulated. The
most comrion model of a porous material's internal-void structure i3 myriad
randomly oriented nonintersecting cylindrica) pores plercing the solid. The
various pores may have different radil.

Using this model, an equation may be developed for the total diffusive
flux through a porous solid in thz Wiocke-Kalientach experiment. A pore-size
distribution function f(r) is defined so that f(r)dr 1is the fraction of
th: total pore volume that is composed of pores with radil between r and
r + dr. If all the pores are oriented in the direction of diffusive flow,
then it follows from Eq. (1) that the total flux through the porous solid is

Fmax

va = . lap j 21n [ 1 - oy, * (Pgy/Dy) ] | rirdr (6

- T =Yy * Dyp/Dp) |
min

If the pores are not all oriented in the direction of diffusive flow, but
rather are oriented raundomly, then the total flux given by Eq. (6) 1is divided
by a tortuosity factor. For randomly orlented, nonintersccting porea, the
tortuosity factor equals three (Feng and Stewart, 1973). Thus the equatlon

for the tota! diffusive flux through our model poroun materiel o

Ymax
Ny = Dpp T mo | T YAt PPl || tear )
IRT L n Voeay, 4+ ﬁ)ﬁ"?nm\—)

Pmin



If Eqs. (2) and (3) are substituted into Eq. (7), and if a Wicke-
Kallenbach experiment is carried out at a single temperature over a range of
pressures, the resulting equation is

_Do ( 1.75
“ ABPo T/To)

3RTLa
Tmax
) 1.75 1.75 /271y
I . [1 - ayyy + (G0pp 1 P/ tcare M Py arr ) VR )
ram0 1.75 1.75 o 172
AN L1 - a¥po * {{3Dy P T )/ [(2rPT )(BEx/nMA) 1)
The functional dependence of this equation ecan be represented as
b
No(P) = {L K(P,r)f(r)dr (9)

This 1s a Fredholm integral equation of the first kind. If the kernel
K(P,r) 1s a known function and the function NA(P) is also kncvn while
f(r) 1is not, under some conditions the function f(r) may be obtaired.
Since f(r) is the pore-~size distribution we are seeking, solu*ion of the
equatlon will yleld the desired goal.

The equation cannot be solved to yield the distribution f(r) at elther
high cr low pressures. At high precssures, where bulk diffusion completely
limits the flow rate, Eq. (8) becomes

. Fmax
ebfgp (/1 )T 1 =ay,
Np = In ———=| f(r)ur (10)
3RT L 1 - "on
Pmin

In thla cane, NA is not a function of P, 30 no unlque solutlon of the
equation for the function f(r) In poanlible.

AL low presasureon, whore Knuaszn flow Jimits the flux, Eq. (8) becomes
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When this equation 1s vaiid. NA is a function of P, but the value of the
integral does not change when P changes. Therefore no unique solution of
the equation for f(r) 1is possible.

However, for the transition —egion bLetweern the bulk diffusion and Knudse:.
flow regimes, it is possible to solve Eq. (8) for f(r), and so the pore-size
distribution may be obtainnd from a Wicke~Kallenbach experiment carried out
over the proper pressure range. The method for obtainirg the distribution from

the flux data is discussed in the next section.

Solution of the Equation

A Fredholm integral equation of the first kind has the form (Irving and
Mullineaux, 1959):

b
n(x) = J.K(x,t) ¢ (t) dt (12)
a

in which #(t) 1is unknown. If K(x,t) and ¢(t) are reasonably smooth func-

tions of t, the lntegral Eq. (12) can be approximated very closely by the
finite difrerence analog

M
r|(x1) =Z K(xl,tJ) H“(tJ) ‘stJ y L =1, 2, «.., N, ('3)
J=1

for sultably choacn Xy in the interval [c,d]| and tJ in the interval

[a,b]. In matrlx notation, (13} becomen



2= (K gt)e (14)

where 6t 1s a diagonal matrix whose ciagonal elements are the welghting

factors for the integration interval. The atraightforward approach to solving
this, namely, writing

%= ok k-1 ns (15)

do2s not work in most inverse problems. Wildly oscillating "solutions" are ob-
tained as M 1s increastd. An example of this catastrophic behavior is shown
in Allison's paper (1979). The same difficulty occurs in the present situation
when Eq. (15) is applied to Eq. (8.

The reason for che instability of this simple inversion approack lies in
the smoothness of “he kernel and the accuracy with which the data function, n,
is known. In F . (12), ¢(t) can be replaced by ¢ + wn where U:n repre~
sents a high frequency function (such as sin nt). If K 1s a smooth contin-
uous function, then the contribution of dln for sufficiently large n will
be equal to or less than the error present in n(x). In other woi-ds, the
smooth kernel does not allow high frequency components to be disecriminated
agalnst. Consequently, on inversion, there 1s no way to determine the rela-
tive contributions of high frequency components.

An acceptable approach to this problem i1s known anc is commonly called
the method of regularization (Tilhonov, 1963). The Fredholm equation of the
first kind (12) is replaced with

b
S K(s,t)91(t)dt + BH [¢4(s)] = n(s) (16)
a

where NIty ] is a differential operator (usually equal to ¢1(s) + k¢q(s)



d
where k is an arbitrary pssitive function), Eks.t) =./-K(E,5)K(E,t )dL and

_ ]
n(s) =.Z-K(x,s)n(x)dx; this is a general integral equation of the second kind.

These equations are g:nerally well behaved. As gapproaches zero, ¢, in
Eq. (16) approacnes ¢ in Eq. (13). When the integrals in Eq. (16) are approx-
imated by summations of finite increments and the result written in matrix

form, one obtains

e

1 (17)

[ﬁ'_ézuw 3!*.] 4 = K

where K* is the transpose of K, §x is a diagonal matrix whose elements are the

welghting factors for the interval [c,d].

There is a value of ¢ which provides the best approximation ¢ 1(t.)
to ¢ (t). In practice, Eq. (17) is solved repeatedly for ¢ 1(t), using
steadily decreasing values of £. If B 1is allowed to become too smail (gen-
erally, less than the error level in n ), the solution benomes unstable. The
closest arproech of ¢1 to ¢ 1s determined by searching for the value of B
which minimizes the functional

N M
2
J = Z["(xi) -3 K(xi,tj)¢-1(tj){tj] (18)

i=1 J=1

An additional constrzint which imp-oves the determinat:o:. ¢ ¢1(t) is the
requirement that ¢1(t) > 0. Negative vilues of pore-nize «istributions are
meaningless.

This 13 the method used to determine the porc-size distributlions pre-
sented in the followir~ sections of this paper. Further details ol this
technique, its history, fundamentals, and generalizations of it, can be found
in the paper by Allison (1979).



TESTS OF THE METHOD

The first tests evaluated the method under ideal conditions. Two porous
solids containing particular pore-size distributions were pictured and fluxes
calculated that would be obtained experimentally with such materlals. Using
the calculated fluxes, pore-size distributions were determined by the proposed
method and compared with the original postulated distributions. In other

words, a distribution f(r) was stipulated, and N as a function of P

was determined employing Eq. ') with NA as the uﬁknown. Using the calcu-
lated NA(P), the situation wa. chen reversed, and Eq. (8) with f(r) as the
unknown was used to determine f(r) by the numerical technique described in
the preceding section.

The firsc theoretical distribution was a normal one centered about a

pore radius of 50 nm:

£,(r) = 0.03989 exp [- L (r - 30)?] (19)
200

with r 1in nanometers. The second theoretlcal distribution was bimodal, with

components distributed normally around pore radil of 5 and 50 nm. One-=half of

the total pore volume was in each segment [ the distribution. The distri-

butlon was:

fo(r) = 0.1995 exp [-% (r - 5)2] +0.01995 exp |- 23_0 (r - 50)% (20)

Agaln, r 1in this distribution is in nanomcters.
The conditions used for the calculations were:

C 0.5
Temperature, K 298

Y10 1.0
YaL 0.0
Test | Pressure Range, MPa 0.1 - 2.0
Test 2 Presasure Range, MFa 0.1 - 2,0

0-1 - 30.0



In the first test, fluxes were calculated using the postulated simple
normal distribution and a 20-fold pressure range typical of ~xperimental
studies (Ha 1es, 1969). Figure 1 presents the results of this test. The curve
is the pc..ulated normal distribution, and the circles are the values of the
distribution determined using the proposed method. Twenty-one points from the
¢alculatecd=-flux curve were employed. The agreement between the posiulated
curve and the one determined by the proposed method 1s excellent, with only a
slight difference between the postulated curve and the determined one at the
center of the distribution.

The first test showed that the performance of the method ia very good
when the distribution is a simple one. Using a bimodal distribution gives a
much uore severe trial, however, and the second test did this. Following the
same procecdure as in the first test, a pore-size distribution was det:rmined
using the proposed method and compared with the postulated bimodal distri-
bution. The results are snown in Fig. 2. The sclid curve is the postulated
distribution, the triangles were obtained using the 2u-fold pressure range of
the first test, and the circles came from asing a 200-fold pressure range.

Even from the lower pressure range, the two peaks are easily discernible, while
they ar~ quite well defined using the higher pressure range.

A third test of the method checked its sensitivity to small uxperimental
errors. Haynes (19Y69) obtalned diffusion data from Wicke-Kallenbach experi-
ments using several different porous catalysts and adscrbents. Using his data
for Girdler catalyst G-3B, a smoota curve of NA as a function of P was
drawn, and points from this were used to ohiain a pore-size disiribution.

Also, straight lines were drawn between Haynes' data pointa, and another dis-
tribution wus obtained. The two were compared; the difference between the two
curves was slight. The maximum diffsrence betwecn the two curves was less than
two percent and over most of the range wa= lecss than one percent.

It is of interest to compare the pore-size distribution for the Girdler
G~3B obtained from Haynes' diffusion data with that which Haynes obtained by
mercury porousimetry. This is done irn Fig. 3. The differences are slgnificant.
The diffusion-pore~size distribution is much broader, has the shape of an ap-
proximately Maxwelllan distribution, and has a maximum at aboutl 1.5 nm. The
porosimetry-porc=size distribution has the shape of a roughly normal distribu-
tion, is very narrow, and has a peak at about 30 nm. Differences such as these

are being investigated currently,



CONCLUSION

A method of obtaining pore-size distributions from diffusion measure-
ments has been presented. Work on this method is continuing, especially in
tha areas of improving the technique of solving the Fredhoim integral equation
to obtain the distribution, and in the comparison of pore-size distributions
determined Ly this method and those obtained by other techniques,



NOTATION

a lower limit on a definite integral
b upper limit on a definite integral
D diffusivity, cm2/s

f(r) pore-size distribution funetion, in which f(r)dr is the fraction of
pore volume with pore radil between r and r + dr, om™ !

K function of two variables; the k:ri.el in the Fredholm integral equation,

dimensionless

length of diffusion path, em

molecular welght, g/gmole

diffusion flux, gmole/(cmz)(s)

pressure, Pa

gas constant, (cm3)(Pa)/(gmole)(K)

pore radius, cm

variat:le in Fredholm integral equatlon

temperature, °K

variable in Fredholm integral oquation

<€ X =2 7 Wy zZz X L

mole fraction of diffusing gan

Greek letltera

a piarameter related to ratio of molecular welghtn

R smoothing paramci.-r in modlfied Fredholm integral equatlion
t porority of poroun mat.:rial

n funaticn of x

A parameter in Fredholm integral equalion

¢ function of t

Subseriptn

A of aubntance A

AD of aubatanac A in the pronen» of B

AL of subatanee A at the diatant "aee of Lhe porour mitorial
Ao of aubatanen A al Lhe near fnee of Lhe poroun materinl
KA of nubatance A In the Knudinen=f'iow segime

max  maximum value preacnt in the poroun material

min  minimum value preaent In Lhe porouas material
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